12 Convex Quadrilaterals

Definition (quadrilateral)

Let $\{A, B, C, D\}$ be a set of four points in a metric geometry no three of which are collinear. If no two of $int(\overline{AB})$, $int(\overline{BC})$, $int(\overline{CD})$ and $int(\overline{DA})$ intersect, then

$$\Box ABCD = \overline{AB} \cup \overline{BC} \cup \overline{CD} \cup \overline{DA}$$

is a quadrilateral.

Theorem Given a quadrilateral $\Box ABCD$ in a metric geometry then $\Box ABCD = \Box BCDA = \Box CDAB = \Box DABC = \Box ADCB = \Box DCBA = \Box CBAD = \Box BADC$. If both $\Box ABCD$ and $\Box ABDC$ exist, they are not equal.

1. Prove the above theorem.

<u>Definition</u> (sides, vertices, angles, diagonals, opposite vertices, adjacent sides, opposite sides)

In the quadrilateral $\Box ABCD$, the sides are \overline{AB} , \overline{BC} , \overline{CD} , and \overline{DA} ; the vertices arc A, B, C, and D; the angles arc $\angle ABC$, $\angle BCD$, $\angle CDA$, and $\angle DAB$; and the diagonals are \overline{AC} and \overline{BD} . The endpoints of a diagonal are called opposite vertices. If two sides contain a common vertex, the sides are adjacent; otherwise they are opposite. If two angles contain a common side, the angles arc adjacent; otherwise they are opposite.

Theorem In a metric geometry, if $\Box ABCD = \Box PQRS$ then $\{A,B,C,D\} = \{P,Q,R,S\}$. Furthermore, if A = P then C = R and either B = Q or B = S so that the sides, angles, and diagonals of $\Box ABCD$ are the same as those of $\Box PQRS$.

2. Prove the above theorem.

<u>Definition</u> (convex quadrilateral)

A quadrilateral $\Box ABCD$ in a Pasch geometry is a convex quadrilateral if each side lies entirely in a half plane determined by its opposite side.

- **3.** Sketch two quadrilaterals in the Euclidean Plane, one of which is a convex quadrilateral and the other of which is not.
- 4. Sketch two quadrilaterals in the Poincaré Plane, one of which is a convex quadrilateral and the other of which is not.

<u>Theorem</u> In a Pasch geometry, a quadrilateral is a convex quadrilateral if and only if the vertex of each angle is contained in the interior of the opposite angle.

5. Prove the above theorem.

<u>Theorem</u> In a Pasch geometry, the diagonals of a convex quadrilateral intersect.

6. Prove the above theorem.

<u>Theorem</u> Let $\Box ABCD$, be a quadrilateral in a Pasch greometry. If $\overrightarrow{BC} || \overrightarrow{AD}$ then $\Box ABCD$ is a convex quadrilateral.

- **7.** Prove the above theorem.
- **8.** Prove that the quadrilateral $\square ABCD$ in a

Pasch geometry is a convex quadrilateral if and only if each side does not intersect the line determined by its opposite side.

- **9.** Give a "proper" definition of the interior of a convex quadrilateral. Then prove that the interior of a convex quadrilateral is a convex set.
- 10. Prove that in a Pasch geometry if the diagonals of a quadrilateral intersect then the quadrilateral is a convex quadrilateral.

"Prove" may mean "find a counterexample".

11. Prove that in a Pasch geometry at least one vertex of a quadrilateral is in the interior of the opposite angle.